
BIOINSPIRED CONCEPTS: UNIFIED TLEORY.FOR COMPLEX
BIOLOGICAL AND ENGINEER.qG SYSTEMS

AFOSR F49620-01-1-0508
Final Report

John C. Doyle
Control and Dynamical Systems

California Institute of Technology

Abstract

The overall long-term objective of our research is to develop mathematical and soft-
ware infrastructure in support of post-genomics research in systems biology. One
near-term objective articulated in this abstract centers on a deeper understanding of
the organizational principles of biological networks. A distinguishing theme of this
work is its focus on scalable methods of robustness and model (in)validation with
data, as opposed to relying purely on simulation. In computability terms, if sim-
ulation is viewed as a way to attack the NP hard side of biological problems, our
approach attacks the coNP side. Much of the success of reductionist biology has de-
pended on creative individuals who draw biologically meaningful inferences from data
and computation using small scale and informal reasoning. This type of inference was
critical because the reductionist research program itself offered no systematic tools to
deal with complexity, only with the component parts. Far from being dispensed with,
this reasoning process and its biological content must be both formalized and made
rigorous, systematic, and scalable as well, and ultimately teachable. This requires
the development of new mathematics as well as algorithms and software.

A central goal of modeling and simulation is to connect molecular mechanisms to
network function to questions of biomedical relevance. Unfortunately, many of the
most critical questions involve events which are extremely rare at the individual cell
level where the mechanisms act yet catastrophic to the organism. Thus simulation
methods that may be adequate for studying generic or typical behavior are entirely
inadequate to explore such worst-case scenarios, which with conventional methods are
computational intractable. We are extending the best-practice tools and algorithms
for robustness analysis that have become standards in engineering to models of bi-
ological relevance, which are typically nonlinear, hybrid, uncertain, and stochastic.
This includes integrating formal inference methods from the previously fragmented
theories in Computer Science with those of Control and Dynamical Systems. This
involves deep mathematical challenges that parallel those for technological networks,
for which we have made dramatic progress, and on which we are building new tools
for systems biology.
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1 General Introduction and Background

Biological networks connect devices of enormous complexity and sophistication even
at their molecular level into modular components for sensing, signal processing, com-
munication, computation, and actuation. These components are further integrated
into vast regulatory networks with layers of feedback. No one doubts the vast range
of capabilities that a deep understanding of this biological complexity would enable,
but beyond the need for improved experimental technology, and sophisticated bion-
formatics to manage the data such improvements would continue to yield, there is
little consensus as to exactly what further must be done. We claim that the over-
whelmingly greatest source of complexity and the least current understanding lies
in the signaling, communications, and computation modules, and even more so in
the feedback control systems that they comprise. The solution to the challenge of
biological complexity may not be to fundamentally change the way in which current
molecular biology research is done so much as to augment this research with a new
way of thinking about the systems integration issue itself.

Despite its enormous success, the reductionist program provides a poor foundation
for many new technical challenges. For example, the ubiquitous connectivity and
flexibility of the Internet as observed by the user is taken for granted, as are the
wires, chips, and displays that make up the hardware, but it is rare for nonexperts to
be aware of the complex layers of protocols and feedback regulation that makes the
Internet's flexibility and robustness possible. Until recently, there has been limited
theoretical support for the study of the systems-level challenges in either internet-
working or biology, and limited academic research. Nevertheless, for some time there
has been a widely shared vision there could be universal features of complex systems
that can transcend these reductionist decompositions [1, 2, 3], and provide a unifying
integration. Sharp differences have arisen however with regard to exactly what those
features are. We believe there is now a clear, compelling, and coherent path emerging
from the striking convergence of the three research themes of biology, technology, and
mathematics.

First, biologists have provided a detailed description of the components of biolog-
ical networks, and many organizational principles of these networks are becoming
increasingly apparent. Second, advanced information technologies have enabled en-
gineering systems to approach biology in their complexity. We are developing new
theories that elucidate these similarities that are comparable in depth and richness
with those available for more traditional subdisciplines. While these share with their
traditional counterparts many of the domain-specific assumptions that overcome the
intractability of more general formulations, this progress has sharpened the mathe-
matical questions that are relevant to these important application domains. Thus
we have the beginnings of the first coherent, complete theoretical foundation of the
Internet [4, 5, 6, 7, 8, 9], and have also been developing new theory and software
infrastructure to support systems biology [10, 11, 12, 1, 13, 14]. We are making rigor-



ous and precise the notion that this apparent network-level evolutionary convergence
within and between biology and technology is not accidental, but follows necessarily
from the universal requirements of efficiency and robustness.

While the full consequences of the claimed convergence emerging from these two
areas will take years to be fully resolved, an important message is now clear. The
method of decomposing complex systems into vertical layers of varying complexity
and scale, wherein each layer is further decomposed horizontally into modules, appears
to be not only ubiquitous but necessary. It is neither an accident of evolution nor
merely an artificial construct imposed by humans to make biology and technology
comprehensible, although that may be a wonderfully serendipitous side-effect. Thus
we do not advocate abandoning the reductionist program of decomposing complexity,
but in managing the process more consciously and systematically. The disciplinary
decompositions that exist may indeed be historical artifices, but the need for such
decompositions is not. The key to creating an integrated approach to understanding,
exploiting, and mimicking biological complexity is not to replace existing technologies,
but to augment them with a more flexible and rigorous technology for decomposition
and recomposition.

Finally, the mathematical foundation is being developed for a far more unified the-
ory of complex systems that overcomes the intractability that forced the disciplinary
fragmentation in the first place, and this is the most important development for this
project. It is in retrospect unsurprising that a genuinely new science of complexity,
particularly biological, would require equally new mathematics to answer basic uni-
versal questions such as: Is a model consistent with experimental data, which may
come from extremely heterogeneous sources? If so, is it robust to additional pertur-
bations that are plausible but untested? Are different models at multiple scales of
resolution consistent? What is the most promising experiment to refute or refine a
model? These questions are all naturally nonlinear, nonequilibrium, uncertain, hybrid
and so on, and their analysis has relied mainly on simulation. Unfortunately, simula-
tion alone is inadequate. One computer simulation produces one example of one time
history for one set of parameters and initial conditions. Thus simulations can only
ever provide counterexamples to hypotheses about the behavior of a complex system,
and can never provide proofs. (In technical terms, they can in principle provide sat-
isfactory solutions to questions in NP, but not to questions in coNP.) Simulations
can never prove that a given behavior or regularity is necessary and universal; they
can at best show that a behavior is generic or typical. What is needed is an effective
(and scalable) method for, in essence, systematically proving robustness properties
of nonlinear dynamical systems. The possibility of such a thing (especially without
P=NP=coNP in computational complexity theory) is profound and remarkable, and
it is the foundation of our approach.



1.1 The Organization of Biological Networks

One of our goals is to develop a theory of biological organization that exploits the
features of evolution and robustness to constrain the search spaces in our analysis
algorithms. Specifically, our computational methods for modeling from data, simula-
tion, and robustness analysis need not solve arbitrary unstructured problems, which
are certainly intractable, but only those that are biological meaningful. Biological sys-
tems at every level of organization are highly structured, far from equilibrium, persist
there robustly despite fluctuations in their environment and their components, and
have evolved to this highly organized state. This places constraints on biological
organization that has some parallels in technology but none in the other sciences.
Algorithms that exploit this organization can be almost arbitrarily more efficient and
reliable than those that do not, but it requires a rigorous theory to connect the ro-
bustness and evolvability of biological networks, with algorithms for modeling and
system identification, analysis, and simulation. All of our results so far are extremely
encouraging, but are merely the beginning of what we believe is possible.

Our main effort on organizational principles is to identify the features of biological
networks, as opposed to arbitrary sets of chemical reactions, that make automatic
and scalable computational methods feasible, even when the computational complex-
ity classes are worst-case exponential or worse. A smaller effort has been focused
on additionally elucidating organizational principles to provide greater understand-
ing of biological complexity. We want to help answer the question "what is all this
complexity for?" [15]. This will have a huge impact on computation, but the results
can go beyond that. In particular, our program could be viewed as thinking of bi-
ological networks as a kind of technological network built on the physical substrate
of biochemistry, as opposed to, say, the CMOS VLSI and fiber optics of the Inter-
net. Biological networks integrate controls, communications, and computing in a way
that engineers are just beginning to understand in a deeply theoretical way, and we
have had great success on the forefront of those efforts. By explicitly connecting
the theoretical challenges in advanced technological and biological networks, there is
the promise for substantial synergy, and there is strong evidence already that this
approach will bring novel insights to both areas [16, 17, 18, 19, 20, 21, 22].

1.2 Robust yet fragile systems

An emphasis on scalable and provably correct analysis methods is not just for math-
ematical completeness, but is driven by a ubiquitous property of complex engineering
and natural networked systems: they are robust yet fragile (RYF). Complex networks
can provide remarkable robustness despite large perturbations in their environments
and component parts, but they can also be extremely fragile to cascading failure
events triggered by relatively small perturbations. We experience various illnesses,



crashes due to software bugs, viruses, worms, and denial-of-services attacks, power
glitches, security screenings, etc, as annoying but rarely catastrophic. Typically, our
networks protect us. But cancer and other epidemics, chronic auto-immunity, market
crashes, terrorist attacks, large power outages and fires, etc, remind us that our com-
plexity has a price. Indeed, most dollars and lives lost in natural and technological
disasters happen in the few largest events, while the typical event is so small as to
usually go unreported.

Many current military technical visions convincingly suggests that network complex-
ity can provide robustness and efficiency that ultimately greatly exceeds that of com-
parable brute force approaches. The ultimate challenge will not be to make this ap-
parent in demonstrations and typical scenarios, but to avoid the rare but catastrophic
failures that seem to inevitable accompany new levels of complexity. Unfortunately,
the entire scientific enterprise of experimentation, modeling, and simulation of com-
plex systems has been most successful at studying their typical or generic behaviors.
Thus it should be no surprise that the rigorous study of the fragility of complex
systems would require new methods.

That the intrinsically "robust yet fragile" (RYF) nature of complex systems [23, 24,
2, 17, 3, 25] has the computational counterpart of "dual complexity implies primal
fragility" is a key feature of our approach. Practically speaking, this completely
changes what is possible computationally. Organisms, ecosystems, and successful
advanced technologies are highly constrained in that they are not evolved/designed
arbitrarily, but necessarily in ways that are robust to uncertainties in their environ-
ment and their component parts. These are extremely severe constraints, not present
in other sciences but essential in both biology and engineering. The most obvious fea-
ture is that their macroscopic system properties can be both extremely robust to most
microscopic details yet hyper-fragile to a few, and this must shape both modeling and
analysis, and the experimental process that it interacts with. If most details don't
matter, most experiments are relatively uninformative. If a few details are crucial,
then this is where both modeling and experiments must focus, but neither a purely
top-down nor bottom-up approach can reliably find them.

Thus failure to explicitly exploit the highly structured, organized, and "robust yet
fragile" nature of such systems hopelessly dooms any method to be overwhelmed by
their sheer complexity. Technically speaking, we can now formulate a wide range
of questions for very general dynamical systems under a common Lyapunov-type
umbrella, converting them into statements involving semi-algebraic sets, polynomial
(nonlinear) equations and inequalities. Proving such statements is still coNP-hard,
but real algebraic geometry, semi-definite programming, and duality theory from
optimization provide new methods to systematically exhaust coNP by searching for
nested families of short proofs using convex relaxations. Not only can we search for
short proofs systematically, but a lack of short proofs implies, by a generalization of
duality, intrinsic fragilities in the question itself. This feedback from computation to
modeling does not imply P=NP=coNP, which is unlikely, but rather that inference



problems within coNP lacking short proofs can be traced to specific and meaningful
flaws in models or data for which resolution can then be systematically pursued. Note
that this is a radical broadening of the numerical analysts notion of ill-conditioning,
and involves mathematics from a variety of previously unrelated disciplines. Again,
in retrospect, this should not be surprising, but it creates enormous challenges in
both education and the review process.

Though this is all very new, these methods have already found substantial applications
in networking, biology, physics, dynamical systems, controls, algorithms, and finance
[26, 27, 28, 29, 30, 31, 32, 26, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43], and work on
connections with communications theory is in progress and discussed in the technical
details. A side benefit of a deepening understanding of the fundamental nature of
complexity in a general sense is also a new and more rigorous explanations for long-
standing problems in physics associated with complex systems[24, 29, 40, 41, 42, 43,
44, 45, 29, 46, 47].

1.3 Robust and Scalable Validation of Models Against Data

Simulation will always be a workhorse of systems biology, but it can be enhanced sub-
stantially if conjectures formulated using simulation can be proved rigorously. The
linchpin of our proposed modeling system is the development and implementation
of theoretically-sound methods for model validation. Although some existing soft-
ware tools provide mechanisms for comparing a model's behavior to experimental
data (e.g., Gepasi [48, 49]), the methods used to date have been ad-hoc, brute-force
approaches that do not scale to larger models. The theoretical framework described
later in this document represents an unprecedented opportunity to create a system for
model analysis and validation and iterative experimentation for large-scale, stochas-
tic, nonlinear, nonequilibrium, mixed continuous and discrete models with multiple
time and spatial scales. The remarkable quality of the theory is that it can be used
to prove conjectures for this difficult class of models such as "this model cannot fit
the data, no matter what parameters we use" and "this model is robust no matter
how parameters are varied." This is something that previously has not been possi-
ble except for much simpler models. Yet this, together with sophisticated robustness
analysis methods, is exactly the capability needed in order to allow realistic biological
models to be analyzed and related back to the experimental data to help answer the
question, "What is the next experiment that would best differentiate between the
current alternative hypotheses?"

We are relying on SOSTOOLS as a founcation for the system identification and
parameter estimation research, however this reliance is less than it might appear. Our
SOS/SDP framework actually recovers as special cases essentially all of the standard
methods, so the worst-case scenario is that it merely provide an integrated and unified
method to access what might otherwise appear to be quite disparate methods. This



is not an aspect of our methods that we emphasize but it is an important element
in our optimism about their potential. Perhaps more important is the converse,
that we are suspicious of new methods that cannot capture gold-standard methods
already in existence. Another important issue is that the SOS/SDP methods are
the only candidates for a successor to linear programs in providing all the features
of automation, scalability, duality, structure, and fragility to hard problem classes
involving stochastic, hybrid, and nonlinear dynamical systems, in addition to reducing
to linear programs in the special cases when it applies. These two features, plus the
implementation in a MATLAB toolbox, makes SOSTOOLS unique. It also has the
benefit that a large, diverse, and sophisticated research community spanning control
and dynamical systems, hybrid systems, optimization, and many areas of pure and
applied mathematics has recently begun to focus substantial attention in this area.

2 Technical Background

2.1 Sum of Squares Programming

Consider a given system of polynomial equations and inequalities, for instance:

fl(X1,X 2): X + X2-1=0,
g1(X1, X2):= 3X 2 - X - 2 > O, (1)

g2 (Xl, X2):= x 1 -8x 3 .

How can one find real solutions (X1 , x2)? How to prove that they do not exist? And
if the solution set is nonempty, how to optimize a polynomial function over this set?

Until a few years ago, the default answer to these and similar questions would have
been that the possible nonconvexity of the feasible set and/or objective function
precludes any kind of analytic global results. Even today, the methods of choice
for most practitioners would probably employ mostly local techniques (Newton's and
its variations), possibly complemented by a systematic search using deterministic or
stochastic exploration of the solution space, interval analysis or branch and bound.

However, very recently there have been renewed hopes for the efficient solution of
specific instances of this kind of problems. The main reason is the appearance of
methods that combine in a very interesting fashion ideas from real algebraic geometry
and convex optimization [50, 27, 51]. As we will see, these methods are based on the
intimate links between sum of squares decompositions for multivariate polynomials
and semidefinite programming (SDP).

We will outline the essential elements of this new research approach as introduced in



[27, 52]. The centerpieces will be the following two facts about multivariate polyno-
mials and systems of polynomials inequalities:

1. Sum of squares decompositions can be computed using semidefinite program-
ming.

2. The search for infeasibility certificates is a convex problem. For bounded degree,
it is an SDP.

We will define the basic ideas needed to make the assertions above precise, and explain
the relationship with earlier techniques. For this, we will introduce sum of squares
polynomials and the notion of sum of squares programs. We then explain how to use
them to provide infeasibility certificates for systems of polynomial inequalities, finally
putting it all together via the surprising connections with optimization.

2.1.1 Sums of Squares and SOS Programs

Our notation is mostly standard. The monomial x' associated to the n-tuple a
(.,---,a,,) has the form x" ... x' , where ai E No. The degree of a monomial
x' is the nonnegative integer -i3=1 a. A polynomial is a finite linear combination
of monomials Z-,s cx', where the coefficients cc, are real. If all the monomials
have the same degree d, we will call the polynomial homogeneous of degree d. We
denote the ring of multivariate polynomials with real coefficients in the indeterminates
{x 1, .. ,xn} asR~xJ.

A multivariate polynomial is a sum of squares (SOS) if it can be written as a sum of
squares of other polynomials, i.e.,

p(x) =Yq (x), qj(x)=ER2x].
i

If p(x) is SOS then clearly p(x) >_ 0 for all x. In general, SOS decompositions are not
unique. For example, the polynomial p(x1 , x2) = - x1 x2 + x4 + 1 is SOS. Among
infinite others, it has the decompositions: p(xI, x2) 4 - x2)2 + 4(xl + x) 2 + 12
1(3- X2) 2 ± 2X2 -+ 1(9x, - 16X) 2 + 3X . The sum of squares condition is a quite
natural sufficient test for polynomial nonnegativity. Its rich mathematical structure
has been analyzed in detail in the past, notably by Reznick and his coauthors [53, 54],
but until very recently the computational implications have not been fully explored.
In the last few years there have been some very interesting new developments sur-
rounding sums of squares, where several independent approaches have produced a
wide array of results linking foundational questions in algebra with computational
possibilities arising from convex optimization. Most of them employ semidefinite pro-
gramming (SDP) as the essential computational tool. For completeness, we present
in the next paragraph a brief summary of SDP.



Semidefinite programming SDP is a broad generalization of linear programming
(LP), to the case of symmetric matrices. Denoting by S' the space of n x n symmetric
matrices, the standard SDP primal-dual formulation is:

minxCX AiX=bi, i=l,...,m
s X >_ 0 (2)

maxy bTy, s.t. Er=1 Aiy, -_ C

where Ai, C, X E Sn and b, y E R'm. The matrix inequalities are to be interpreted in
the partial order induced by the positive semidefinite cone, i.e., X >- Y means that
X - Y is a positive semidefinite matrix. Since its appearance almost a decade ago
(related ideas, such as eigenvalue optimization, have been around for decades) there
has been a true "revolution" in computational methods, supported by an astonishing
variety of applications. By now there are several excellent introductions to SDP;
among them we mention the well-known work of Vandenberghe and Boyd [55] as a
wonderful survey of the basic theory and initial applications, and the handbook [56]
for a comprehensive treatment of the many aspects of the subject.

From SDP to SOS The main object of interest in semidefinite programming is
quadratic forms, that are positive semidefinite. When attempting to generalize this
construction to homogeneous polynomials of higher degree, an unsurmountable diffi-
culty that appears is the fact that deciding nonnegativity for quartic or higher degree
forms is an NP-hard problem. Therefore, a computational tractable replacement for
this is the following: even degree polynomials, that are sums of squares.

Sum of squares programs can then be defined as optimization problems over affine
families of polynomials, subject to SOS contraints. Like SDPs, there are several
possible equivalent descriptions. We choose below a free variables formulation, to
highlight the analogy with the standard SDP dual form discussed above. A sum of
squares program has the form

maxy blyl +'" + bmym

s.t. Pi(x,y) are SOS, i = 1,...,p

where P2(x,y) := Ci(x) + Ail(x)yl +." + Aim(x)ym, and the Ci, Aij are given poly-
nomials in the variables xi.

SOS programs are very useful, since they directly operate with polynomials as their
basic objects, thus providing a quite natural modelling formulation for many prob-
lems. Among others, examples for this are the search for Lyapunov functions for
nonlinear systems [27, 57], probability inequalities [58], as well as the relaxations in
[27, 51] discussed below.

Interestingly enough, despite their apparently greater generality, sum of squares pro-
grams are in fact equivalent to SDPs. On the one hand, by choosing the polynomials



Ci(x), Ai,(x) to be quadratic forms, we recover standard SDP. On the other hand, as
we will see in the next section, it is possible to exactly embed every SOS program
into a larger SDP. Nevertheless, the rich algebraic structure of SOS programs will
allow us a much deeper understanding of their special properties, as well as enable
customized, more efficient algorithms for their solution [59]. Furthermore, as illus-
trated in later sections, there are numerous questions related to some foundational
issues in nonconvex optimization that have simple and natural formulations as SOS
programs.

SOS programs as SDPs Sum of squares programs can be written as SDPs. The
reason is the following theorem: A polynomial p(x) is SOS if and only if p(x) = zTQz,
where z is a vector of monomials in the xi variables, Q E S' and Q >- 0. In other
words, every SOS polynomial can be written as a quadratic form in a set of monomials
of cardinality N, with the corresponding matrix being positive semidefinite. The
vector of monomials z (and therefore N) in general depends on the degree and sparsity
pattern of p(x). If p(x) has n variables and total degree 2d, then z can always be
chosen as a subset of the set of monomials of degree less than or equal to d, of
cardinality N = ('t). Consider again the polynomial p(Xl, X2 ) = X2 -1 x ± X4 + 1.
It has the representation

1 T -2 0 1
1 X2 0 4 0 0 X2

P(X1I'X2) = 6 x 2 -- 2 0 6 -- 3 X 2

26 -3
Xl 0 0 -3 6J X[

and the matrix in the expression above is positive semidefinite.

In the representation f(x) = zTQz, for the right- and left-hand sides to be identical,
all the coefficients of the corresponding polynomials should be equal. Since Q is simul-
taneously constrained by linear equations and a positive semidefiniteness condition,
the problem can be easily seen to be directly equivalent to an SDP feasibility prob-
lem in the standard primal form (2). Given a SOS program, we can use the theorem
above to construct an equivalent SDP. The conversion step is fully algorithmic, and
has been implemented, for instance, in the SOSTOOLS software package, described
in the next section. Therefore, we can in principle directly apply all the available
numerical methods for SDP to solve SOS programs.

2.1.2 Algebra and Optimization

A central theme throughout convex optimization is the idea of infeasibility certificates
(for instance, in LP via Farkas' lemma), or equivalently, theorems of the alternative.
As we will see, the key link relating algebra and optimization in this approach is the



fact that infeasibility can always be certified by a particular algebraic identity, whose
solution is found via convex optimization.

Ideals and cones For later reference, we define here two important algebraic ob-
jects: the ideal and the cone associated with a set of polynomials: Given a set of
multivariate polynomials {fi,---, fm}, let

m

ideal(f1,..., fm,) := {f I= tifL, ti E -R[x]}.

Also, given a set of multivariate polynomials {gi,.... gm}, let

cone(g,,..., g) := {g I g = SO + 1 sigi + E sijgigj + E Sijkgigjgk +'''}

{10 {f,.} {zi,k}

where each term in the sum is a squarefree product of the polynomials gi, with a
coefficient s, E 7Z[x] that is a sums of squares. The sum is finite, with a total of
2m - 1 terms, corresponding to the nonempty subsets of {gl,..., gIn}.

These algebraic objects will be used for deriving valid inequalities, which are logical
consequences of the given constraints. Notice that by construction, every polynomial
in ideal(fi) vanishes in the solution set of fi(x) = 0. Similarly, every element of
cone(gj) is clearly nonnegative on the feasible set of gi(x) > 0. The notions of ideal
and cone as used above are standard in real algebraic geometry; see for instance [60].
In particular, the cones are also referred to as a preorders. Notice that as geometric
objects, ideals are affine sets, and cones are closed under convex combinations and
nonnegative scalings (i.e., they are actually cones in the convex geometry sense).
These convexity properties, coupled with the relationships between SDP and SOS,
will be key for our developments in the next section.

Infeasibility certificates If a system of equations does not have solutions, how
do we prove this fact? A very useful concept is that of certificates, which are formal
algebraic identities that provide irrefutable evidence of the nonexistence of solutions.

We briefly illustrate some well-known examples below. The first two deal with linear
systems and polynomial equations over the complex numbers, respectively.

"* Range/kernel: Ax = b is infeasible * 3IL p s.t. AT11 = 0, bTV -= -1.

"* Hilbert's Nullstellensatz: Let fi(z), ... , fm (z) be polynomials in complex vari-
ables z 1,..., z,. Then,

fi(z) = 0 (i = 1,... ,m) is infeasible in C' € -1 E ideal(fi,..., fm).



Each of these theorems has an "easy" direction. For instance, for the first case, given

the multipliers [' the infeasibility is obvious, since

SAx = b =ý gTAx = LTb 0=-i,

which is clearly a contradiction. The two theorems above deal only with the case of
equations. The inclusion of inequalities in the problem formulation poses additional
algebraic challenges, because we need to work on an ordered field. In other words,
we need to take into account special properties of the reals, and not just the complex
numbers.

For the case of linear inequalities, LP duality provides the following characterization
(Farkas lemma):

{ Ax+b = 0 iAif ibe 0 s.t. iAT +CTA = 0
Cx+d > 0 - bi"sb+dT\ = -1.

Although not widely known in the optimization community until recently, it turns
out that similar certificates do exist for arbitrary systems of polynomial equations
and inequalities over the reals. The result essentially appears in this form in [60], and
is due to Stengle [61], and is called Positivstellensatz.

{i (x) = 0, (i = 1,. . . ,m) is infeasible in R'
gjix) Ž 0, (i =1,....,P)

F(x) +G(x) = -1
3 F(x), G(x) E 7R[x] s.t. F(x) G ideal(f 1 ,. .. , fm )

IG(x) E cone(gi,...,gp).

The theorem states that for every infeasible system of polynomial equations and
inequalities, there exists a simple algebraic identity that directly certifies the nonexis-
tence of real solutions. By construction, the evaluation of the polynomial F(x) + G(x)
at any feasible point should produce a nonnegative number. However, since this
expression is identically equal to the polynomial -1, we arrive at a contradiction.
Remarkably, the Positivstellensatz holds under no assumptions whatsoever on the
polynomials.

In the worst case, the degree of the infeasibility certificates F(x), G(x) could be high
(of course, this is to be expected, due to the NP-hardness of the original question).
In fact, there are a few explicit counterexamples where large degree refutations are
necessary [62]. Nevertheless, for many problems of practical interest, it is often the
case that it is possible to prove infeasibility using relatively low-degree certificates.
There is significant numerical evidence that this is the case, as indicated by the large
number of practical applications where SDP relaxations based on these techniques
have provided solutions of very high quality.



Degree \ Field Complex Real
Linear Range/Kernel Farkas Lemma

Linear Algebra Linear Programming
Polynomial Nullstellensatz Positivstellensatz

Bounded degree: Linear Algebra Bounded degree: SDP
Groebner bases

Table 1: Infeasibility certificates and associated computational techniques.

Of course, we are concerned with the effective computation of these certificates. For
the Positivstellensatz, notice that the cones and ideals as defined above are always
convex sets in the space of polynomials. A key consequence is that the conditions
in Posivstellensatz for a certificate to exist are therefore convex, regardless of any
convexity property of the original problem. Even more, the same property holds if
we consider only bounded-degree sections, i.e., the intersection with the set of poly-
nomials of degree less than or equal to a given number D. In this case, the conditions
in the P-satz have exactly the form of a SOS program! Of course, as discussed ear-
lier, this implies that we can find bounded-degree certificates, by solving semidefinite
programs. In Table 1 we present a summary of the infeasibility certificates discussed,
and the associated computational techniques.

As outlined in the preceding paragraphs, there is a direct connection going from
general polynomial optimization problems to SDP, via P-satz infeasibility certificates.
Pictorially, we have the following:

Polynomial systems = P-satz certificates = SOS programs • SDP

Even though we have discussed only feasibility problems, there are obvious straight-
forward connections with optimization. By considering the emptiness of the sublevel
sets of the objective function, sequences of converging bounds indexed by certificate
degree can be directly constructed.

2.1.3 SOSTOOLS

SOSTOOLS [63, 64] is a free, third-party MATLAB toolbox for solving sum of squares
programs. The functions implemented in SOSTOOLS are based on the sum of squares
decomposition of multivariate polynomials [65], which can be efficiently computed
using semidefinite programming [55]. SOSTOOLS was the result of the recent interest
in sum of squares polynomials [66, 65, 67, 27, 68, 69, 51], partly due to the fact that
these techniques provide convex relaxations for many computationally hard problems
such as global, constrained, and boolean optimization [66, 69, 51, 70, 71, 72].

In addition to the optimization problems mentioned above, sum of squares polynomi-



als (and hence SOSTOOLS) find applications in several systems analysis and control
theory problems, such as nonlinear stability analysis [27, 57, 73, 34], robustness anal-
ysis [27, 57, 34, 14], nonlinear synthesis [74, 75], and model validation [76, 14]. Some
other areas in which SOSTOOLS is applicable are geometric theorem proving [77]
and quantum physics [29].

Currently, sum of squares programs are handled by reformulating them as semidef-
inite programs (SDPs), which in turn are solved efficiently, e.g. using interior point
methods. Several commercial and non-commercial software packages are available for
solving SDPs. While the conversion from SOS programs to SDPs can be performed
manually for small size instances or tailored for specific problem classes, such a con-
version can be quite cumbersome to perform in general. It is therefore desirable to
have a tool that automatically performs this conversion for general SOS programs.
This is exactly where SOSTOOLS comes to play. It automates the conversion from
SOS program to SDP, calls the SDP solver, and converts the SDP solution back to
the solution of the original SOS program. At present, it uses another free MATLAB
add-on called SeDuMi [78] as the SDP solver.

All polynomials in SOSTOOLS are implemented as symbolic objects, making full use
of the MATLAB Symbolic Math Toolbox's capabilities. This gives to the user the
benefit of being able to do all polynomial manipulations using the usual arithmetic
operators: +, -, *, /, -; as well as differentiation, integration, point evaluation, etc. In
addition, this provides the possibility of interfacing with the Maple symbolic engine
and library, which is advantageous.

The user interface has been designed to be as simple, easy to use, and transparent
as possible. A user creates an SOS program by declaring SOS program variables,
adding SOS program constraints, setting the objective function, and so on. After the
program is created, the user calls one function to run the solver. Finally, the user
retrieves solutions to the SOS program using another function.

SOSTOOLS is available for free under the GNU General Public License. The software
and its user's manual can be downloaded from the SOSTOOLS website [79]. It
requires MATLAB version 6.0 or later, SeDuMi version 1.05, and the Symbolic Math
Toolbox version 2.1.2. SOSTOOLS can be easily run on a UNIX workstation or
on a Windows PC. It utilizes the MATLAB sparse matrix representation for good
performance and to reduce the amount of memory needed. To give an illustrative
figure of the computational load, all the demo files that are distributed along with
SOSTOOLS can be solved in less than 8 seconds by SOSTOOLS running on a PC
laptop with a 933 Mhz Intel Pentium-III processor and 384 MBytes of RAM.



2.2 Stability Analysis Using Sum of Squares Programming

It is striking that there are now so many areas of research in which the Sum of
Squares approach and positivstellensatz find application. Formulating the problem
as the emptiness of a set is an important step, but this only involves algebraic in-
equalities. A natural question to ask is whether we can use the aforementioned tools
to answer meaningful questions on models of complex biological systems, in other
words whether the properties of a dynamical system can be inferred by constructing
these proofs. Such questions may involve the functionality of the system, something
that simulation alone cannot guarantee. In particular, the stability of the equilibria
of a particular biological system may be of interest. The question therefore is whether
positivstellensatz and the Sum of Squares decomposition can provide an alternative
to simulation for nonlinear systems.

This problem is particularly important for biological systems, as the nonlinearities
and their possible hybrid nature can not be neglected and the tools to date that
use exhaustive simulations are doomed by computational complexity as the state
dimension increases and the number of parameters increases. As an alternative to
simulation, the concept of Lyapunov function can be used as a certificate for stability
of the system. Let us consider a system ± = f(x) which has an equilibrium x*, with
a neighborhood X. Lyapunov functions, usually denoted by V(x) are nothing but
energy-like functions that have the following properties:

V(x*) =0, (3)

V(x)>O VXCX\{x*}, (4)
dV 01Vd-= - (X)f(x): •O Vx G X. (5)
dt Ox

For example, think of the pendulum with friction; the sum of the kinetic and potential

energy can serve as a Lyapunov function, in that at the point of rest, the energy is
zero, is positive in any other configuration, and while the system evolves the energy
is non-increasing, due to dissipation because of friction at the hinge.

Lyapunov functions are at the center of nonlinear systems analysis and design. When
the systems under investigation are uncertain, they can also be parameterized ap-
propriately to serve as a robust stability proof, i.e. a proof that the system is stable
for all values of the parameters. A more general class of systems, such as systems
with equality, inequality and Integral Quadratic constraints can also be tackled by
constructing Lyapunov functions (see the Appendix for more details).

Let us turn back to the two Lyapunov properties, namely the positive definiteness
condition on V(x), i.e. V(x) > 0 and the negative semidefiniteness of its time deriva-

tive, i.e. dV(x) < 0. These are essentially positivity properties. How about usingdt --

the Sum of Squares decomposition to check them? This idea is indeed the step that
opened up the way to an algorithmic analysis of nonlinear systems. People understood



that the conditions in Lyapunov's stability theorem were difficult to test and there
was no constructive methodology to construct these functions, but it took a century
to develop the theory necessary for the construction of these energy-like functions
through the Sum of Squares decomposition algorithmically [27]. The fact that there
might be parametric uncertainty or other types of uncertainty in the system can also
be dealt directly; parameterized Lyapunov functions can be constructed in the same
unified manner. We can now obtain information about the properties of the system
further away from the equilibrium, that no linearisation procedure could provide us.

The construction of Lyapunov functions in some region of the equilibrium reveals
estimates of the 'region of attraction' of it; Sometimes the presence of other equilibria
render any statement we make about the system non-global; this implies the use of
inequality constraints in the state-space, to restrict the construction of the Lyapunov
function in some region around the equilibrium, a formulation that can be taken into
account in a unified manner. In fact quite a lot of problems in nonlinear dynamical
systems theory can now be answered algorithmically, such as hybrid, time-delay,
stochastic etc.

What might be misunderstood is that the system vector field, i.e. f(x) in Lx = f(x)
should be in a polynomial form, so that the Sum of Squares decomposition of poly-
nomials can be used to construct the corresponding Lyapunov function. However it
is always possible, through a series of changes of variables and recasting to put the
system description into polynomial, plus a few 'constraints' that describe the new
variables. While most biological systems have or can be approximated by polyno-
mial descriptions, in many cases models have rational or fractional vector fields; they
appear naturally with the use of Hill Functions to describe a reaction's velocity in
the Michaelis-Menten sense. In this case the denominator of the system description
has always the same sign, as otherwise one is faced with the unrealistic case of a
system with a finite escape time. Therefore the quality of the vector field and its
properties would not change if one multiplied out the vector field by its least common
denominator, thus producing a system in polynomial form ready for analysis using
the Sum of Squares decomposition. Virtually any problem that can be formulated
with a finite number of polynomial equalities and inequalities fits in this framework.
The theory that we developed is indeed unified in this sense, and in all that will
follow all these concerns will find solution by resorting to a generalization of Lya-
punov's stability theorem to systems with equality, inequality and Integral Quadratic
constraints. Even hybrid systems can be dealt with directly in this same framework,
and we will come back to this later. Also, the methodology used to cover the stiff
dynamics of equations by IQCs can be extended to systems containing nonlinearities
and the resulting system can still be analyzed using the sum of squares machinery.

Similar analysis using sum of squares programming has also been developed for hybrid
systems. Stability analysis of switched and hybrid systems has been treated in e.g. [80,
81, 82, 83]. See also [84] for a recent survey of the field. The developments in this area
have been amazing, but again have been restricted to the analysis of linear switching



events with simple switching rules, etc. One way of proving stability of switched
and hybrid systems is by using piecewise quadratic Lyapunov functions [80, 82, 831,
which are constructed by concatenating several quadratic Lyapunov-like functions
across the discrete modes of the system. This approach is quite effective but in many
cases it can be conservative. Nonetheless, by constructing polynomial and piecewise
polynomial Lyapunov functions using the sum of squares techniques, the power of
the method can be significantly amplified. The method generalizes previous analysis
methods using quadratic and piecewise quadratic Lyapunov functions. Some features
of the new approach are as follows. First, stability can be proven with a smaller
number of Lyapunov-like functions, eliminating the need of refining the state space
partition. Second, the method can be applied to systems with nonlinear subsystems
and nonlinear switching surfaces. Finally, parametric robustness analysis can be
performed in a straightforward manner.

2.3 Formal Methods for Reachability Analysis

It has been noted previously that biological processes are multiscale and stochastic.
Simulation and analysis of complex models of this kind is quite challenging. We
have also emphasized a need for modeling systems at different levels of abstraction.
These different abstract models are represented in different mathematical formalisms.
One particularly useful formalism for representing useful abstractions, especially for
purposes of analysis and simulation, is that of hybrid systems, either deterministic,
nondeterministic (uncertain), or stochastic (uncertain, with underlying probabilistic
interpretation).

Hybrid systems incorporate both continuous-time dynamics and discrete elements.
The continuous dynamics are given using time varying variables through differential
equations. In the realm of biological process modeling, the discrete dynamics can
arise in at least three different ways. First, abstraction and simplification of a con-
tinuous model can result in discrete dynamics. For example, systems that exhibit
multiscale dynamics can be simplified by replacing certain slowly changing variables
by their piecewise constant approximation. This is done when interest is in ana-
lyzing the system on a small time scale. Additionally, sigmoidal nonlinearities are
commonly observed in biological data correlation and the corresponding models often
use (continuous) sigmoidal functions. These can also be approximated by discrete
transitions between piecewise-linear regions. A second source of discrete behavior is
the presence of an inherently discrete process. For example, dynamics in the presence
of small number of molecules are best described using discrete steps. Finally, faulty
modes may also be modeled using discrete mode changes. For example, in normal
conditions, the kidney does not excrete any glucose, but it starts excreting glucose
if the level of glucose rises very high. This change can be captured using a discrete
transition.



Uncertainties and stochastic behavior are common in biology. Rate constants and
several other parameters in models of biological systems are determined using algo-
rithms for determining minimal error curve fits for available data points. Parameter
values obtained this way are "representative" values, they do not capture all observed
behaviors. The actual value of the parameter is possibly stochastic in a given range.
In many cases, we are interested in knowing about all possible behaviors of the sys-
tem, rather than the behavior of the system assuming a representative value for the
parameters. For example, when studying the effect of insulin injections on blood
glucose concentrations, we wish to know all likely blood glucose concentrations that
a human body may exhibit. In such cases uncertainties can be modeled using nonde-
terminism and the resulting model can be analyzed for all possible behaviors. Thus,
at suitable abstract levels, biological processes are effectively modeled as nondeter-
ministic, uncertain hybrid systems. These models can then be analyzed for safety
properties, that is, properties about all possible behaviors of the system. In principle,
safety verification or reachability analysis aims to show that starting at some initial
conditions, a system cannot evolve to some unsafe region in the state space.

2.3.1 Techniques Based on Sum of Squares Programming

Recently, a set of techniques based on convex optimization and sum of squares meth-
ods has also been proposed for reachability analysis of nonlinear and hybrid systems
[85, 86, 87, 88]. These techniques verify temporal properties such as safety (e.g.,
something bad never happens), reachability (e.g., something good can happen), and
eventuality/liveness (e.g., something good will surely happen) using certain functions
of states called barrier certificates and density functions [85, 87]. Not only can they
be applied to discrete transition systems, because of their deductive nature the tech-
niques can be directly applied to systems with infinite or even uncountable number
of states, such as continuous and hybrid systems.

For a simple illustration, consider a continuous system t = f(x, d) where x is the
state of the system taking its value in the state space 2d and d is a disturbance input
taking its value in D. In addition, consider A'o C X' as the set of possible initial states,
and X,, C X' as the set of unsafe states. Suppose there exists a barrier certificate, i.e.,
a differentiable function B(x) satisfying the inequalities

B(x) •5O Vx EE Xo, (6)
B(x) > 0 Vx E X,, (7)
OB
-(x)f(x,d)<O VxEA×xD. (8)

Then it is easy to see that the safety property holds, i.e., that for all possible initial
state x0 E A'0 and for all possible disturbance input there exists no trajectory of
the system that goes from the initial set to the unsafe set. As another illustration,
consider the same system but now assume that X,. C A' is a set of "good" states that



should be reached by the system. Assuming that X is bounded, then the existence
of B(x) satisfying

B(x) < 0 Vx E Xo, (9)

B(x) > O Vx E aX, (10)
a-B(x)f(x,d) -E Vx C (X \ X) x D, (11)
Ox

where 9X is the boundary of X and c is a positive number, will prove the even-
tuality/liveness property, i.e., that for all initial state in A'0 and under all possible
disturbance the trajectory of the system will reach the target set 2X in some finite
time. Systems with hybrid dynamics can be treated in an analogous manner. The
idea here is simply to ask that during the discrete transition the value of B(x) also
satisfies certain non-increasing conditions, similar to what we have in (8) and (11).

It is obvious that simulation is of limited use to address the verification of safety or
eventuality properties stated above. Since the state of the system is uncountable,
verifying by simulation that the properties hold in all cases is never exact, simply
because it is impossible to test all system behaviors. In fact, simulation alone may
fail to uncover the existence of bad behaviors. Using barrier certificates and density
functions to prove safety, reachability, and eventuality is analogous to using Lyapunov
functions to prove stability. It eliminates the needs to run simulations, to explicitly
compute the flow of the system, or to propagate sets of states. Another consequence of
their deductive nature is that the techniques are applicable to nonlinear, uncertain,
and constrained systems. Moreover, safety verification of stochastic systems can
be handled by computing an appropriate barrier certificate which upper-bounds the
probability of reaching the unsafe set [86]. In this case, a function B(x) which is a
supermartingale, i.e., whose evolution along time is non-increasing on the average, is
used.

The conditions that must be satisfied by barrier certificates and density functions
are formulated as convex programming problems. In addition to benefits in terms of
computation, the duality structure inherent because of their formulation as convex
programs also gives theoretical advantages. For example, a completeness statement
in safety verification using barrier certificates has been obtained by exploiting this
duality structure [88]. For continuous and hybrid systems whose descriptions are in
terms of polynomials, sum of squares programming described in Section 2.1 provides
a hierarchy of scalable algorithmic methods for computing barrier certificates and
density functions, where at each level the computational cost grows polynomially
with respect to the system size. The computation can be performed efficiently using
semidefinite programming, for example using the software SOSTOOLS. Because of
the possibility to use sum of squares programming for computing barrier certificates
and density functions, the methodology seems to be more scalable than many other
existing methods that can handle nonlinear continuous and hybrid systems. Successful
application of the method for verifying the safety property of a NASA life support



system, which is a nonlinear hybrid systems with 6 discrete modes and 10 continuous
states, has been reported in [89].

3 New Results and Challenges

3.1 Model/Data Comparison for Validation of Biological Mod-
els

The new sum of squares based methodology described in the preceding sections pro-
vides for the first time a systematic, scalable approach to robustness analysis and
model invalidation for nonlinear and hybrid DAE systems, complementing modelling
and simulation with a powerful proof infrastructure. While it builds directly on
decades of research in robust control and dynamical systems, it represents a true wa-
tershed in these subjects. The models used previously are simple enough that ad hoc
approaches are modestly effective, but even here the sum of squares formalisms are
much more efficient and effective, and they scale to larger problems. Furthermore,
we believe that all of the above methods could in principle be taught at the under-
graduate level, potentially streamlining the teaching of much of systems theory and
giving broad access to powerful tools.

3.1.1 The General Form of Data Collaboration: SBPriME

GRI-Mech and SBPriMEare the work of our colleagues Andy Packard and Michael
Frenklach, who are collaborating with Adam Arkin (all at UC Berkeley) on the Al-
liance for Cellular Signalling (AfCS) modeling project. The AfCS is a large project
funded by NIH that is providing us with a modern example of post-genomics biol-
ogy research, and as such has been a major driver for the development of our tools.
They are currently the most sophisticated users of SOSTOOLS in the biology com-
munity. The GRI-Mech approach that has been adopted for system identification in
the AfCS modeling effort puts theory/models and data on the same footing. It does
not change the way experimentation is done, but requires a different approach to
analyzing even one's own observations and, as a consequence, places new standards
on data reporting. In this approach, referred to here as SBPriME, measured data,
its estimated uncertainty, and a model of the experimental system is treated as an
assertion whose correctness depends on the suitability of the model and the reliability
of the measured data. Taken together, the model and measurement constitute a (low
dimensional) constraint in the "global" unknown parameter space. Specifically, only
those parameters that are consistent with the model/measurement pair are possible
values of the unknown parameters.



Formally, the reportable content of an experiment and modeling effort consists of

1. A model, M, which relates input signals, output signals, initial conditions, mod-
eled unknown parameters, and modeled unknown disturbances in an implicit
manner

M(u, y, xo, 0, d) =0 (12)

The form of M is often an ordinary differential or difference equation, derived
from a combination of first-principles, conservation laws and additional expert-
supplied assumptions.

2. A parameter set E, which captures the a priori information about parameter
values as 0 E e

3. A disturbance signal set D, which captures the a priori information about un-
known disturbances as d E D

4. Data, the measured quantities (UdNata, Ydata, XO,data)

Together, these form a constraint on the parameter space, that implied by writing all
the information in a "publicly" accessible manner

M, (Udata, Ydata, XO,data), 0 E E, d E D. (13)

A collection of these constitute a multitude of assertions about the joint parameter
space encompassed by the individual assertions. One would like to do reasoning on
this collection. For instance:

"* Is the collection consistent? More specifically, is the set of unknown parame-
ters which satisfy each the model/measurement assertions a nonempty set? If
not, then something is wrong about the collection, invalidating at least one of
the model/measurement assertions. Moreover, a proof (experiment list, math
programming utilities) to illustrate the invalidation exists. As an example, in
section 3.1.3 we illustate a class of uncertain, nonlinear dynamical systems for
which this consistency question reduces to linear programming.

"* Can several consistent assertions be collapsed (i.e., reduced) into a single asser-
tion whose description is simpler than simply the collection from which it was
inferred?

" Which model/measurement pairs have the most impact on the collection's
(in)consistency? Answering this can flag assertions that are possibly incorrect,
though self-consistent.

" Which model assumptions have the most impact on the collection's (in)consistency?
We want to look for architectures that are both consistent and whose consis-
tency is robust to certain variations. Answering the posed question will flag
assumptions within assertions that the consistency is fragile with respect to.



"* What is the tightest range of predictions about an additional process model (i.e.,
its quantity of interest) possible given that these predictions must be consistent
with the collection?

"* What is the utility of a hypothetical experiment to further knowledge regarding
the system. In this framework, "what-if" questions can be posed and addressed.

Informally, we refer to these questions as Model/Data comparison problems. It is
important to note that all of these questions lead to set-intersection questions, which
can be posed as constrained optimization problems. The purely mathematical task
of extracting desired information from all reported experiments is relegated to high-
powered, scalable, global optimization algorithms described in section 2.1. In most
cases, duality results yield "derivative"-like information as well. This may be used,
somewhat heuristically, in order to quickly screen (from a long list) specific model/data
comparison problems to more fully analyze.

3.1.2 Connecting with System Identification

Our approach shares characteristics with conventional system identification. The
latter also treats parameterized models and the use of experimental data to better
characterize model parameters. Identification typically involves assumptions regard-
ing the noise properties of measurements and disturbances, and optimization of a cost
function to decide a best (maximum-likelihood (ML), maximum a posteriori proba-
bility) parameter value based on these noise statistics, the experimental data, and
an a priori distribution on the parameters. In addition, it computes estimates of
the variances in this optimal parameter. Because of this probabilistic framework,
notions of data/model invalidation are less crisp. By contrast, our approach can be
thought of as deterministic and worst-case, tracking the feasibility of well-defined
inequalities drawn from models and data. No attempt is made to characterize the
distribution of the parameters; inferences are drawn from the set of parameters that
are not invalidated by the model/data pair.

Although our numerical techniques take a deterministic approach to experimental er-
rors and parameter uncertainty, the necessity for collaborative data processing (and
software to support this) put forth in this proposal are equally relevant in this tra-
ditional identification setting. To properly account for coupled uncertainty between
multiple experimental analyses, data must be shared and reasoned with in a single
processing step. The sum-of-squares relaxations developed to solve the data/model
comparison problem will also benefit the identification community by virtue of im-
provements in constrained global optimizations methodologies.



3.1.3 Specific Model Forms

An instance of the model/data comparison problem outlined in the previous section
with a tractable solution follows. Consider a discrete-time model, with uncertain
coefficients whose evolution is governed by

N

Yk = E .m Pm(Yk-1, ... ,Yk-M, Uk-1, ... ,Uk-M) dk (14)
m=1

The polynomials {pm}4=1 are known. The parameter vector 0 and the disturbance
sequence d are unknown. A priori information consists of linear inequalities for 0 as
well as for d,

A 0 < b(15).4 d -

Given a sequence of data (y, u) and initial values (y-1, y-2, • • •, Y-M), the model/data
comparison problem is to determine if there exists a parameter value 0 and distur-
bance sequence d consistent with the apriori information (the linear inequalities in
equation 15) such that the data is reproduced by the model, or to prove that no such
combination exists.

The structure of the system in equation 14 yields a validation (and hence falsification)
problem decided with linear programming. Consequently, all of the desirable proper-
ties of linear programming (robust solvability, duality theory, favorable computational
growth with problem size, a well defined notion of ill-conditioning) translate to this
model/data comparison problem. A simple alteration of the vector field so that it
not linear in the parameters, completely changes the complexity of the model/data
comparison problem. Consider

Yk = P(Yk-1, ... ,Yk-M, Uk-1,... ,Uk-M, O) + dk (16)

The polynomial p is known. Again, the parameter vector 0 and the disturbance
sequence d are unknown and a priori information consists of (e.g.) the linear inequal-
ities in equation 15. This problem is not decidable by LP, though can be attacked
in a scalable manner by the more powerful analysis techniques available with SOS
programming and the barrier certificate approach, described below.

3.1.4 System ID challenges

The basic concepts in systems ID are well-known but implementation in the context
of our goals for biology leads to computational challenges that we have begun to
address. There are several elements that must be combined to adequately treat
these issues. First, parameters in biological and engineering models vary enormously
in their impact on network-level phenotypes. In particular, circuitry is designed



or has evolved to be largely insensitive to large variations in many parameters but
with extreme sensitivity to a few. This simultaneous coexistence of robustness and
fragility is typical, and has tremendous benefits, though it apparently leads to some
confusion. One consequence is that robust parameters (in the sense that they can
vary widely with little phenotype) will typically vary widely experimentally, and even
if they do not, are intrinsically hard to identify from input-output experiments on
the intact network. This is well-known in control theory. Fortunately, it is also the
case that it is less important that these parameters be known accurately, compared
to "fragile" parameters. What is not trivial is having the entire toolset of modeling,
analysis, and system ID work with uncertain parameters throughout without the
need to ultimately assign exact values, since in any important sense there are no
condition independent "true values" for these parameters. Thus our use of explicitly
uncertain models throughout is crucial, as is the unique capability of our methods
to provide versatile sensitivity and robustness analysis of stochastic, hybrid, and
nonlinear dynamical systems.

It is possible that important (e.g. fragile) parameters are nonetheless poorly esti-
mated from a given set of data, for any number of reasons, and the determination
of the next high value added experiment requires several elements. One is the iden-
tification through local sensitivity or global robustness analysis that the range of
parameter values that are unfalsified by data is inadequate for predicting phenotypes
of interest. The next is to turn the system ID and model (in)validation tools back-
wards to identify new data that, based on current models and understanding, would
be most informative. These all lead to constrained optimization problems which are
not convex except in the most trivial cases. Our methods are aimed at solving these
optimization problems in a scalable and automated way, and the use of duality-based
methods are particularly useful in using the dual variables to evaluate sensitivities
to primal constraints. We have extensive experience with these issues for engineer-
ing control systems and more recently in the context of methane combustion, but
applications in biology are new and largely untried.

A serious difficulty to be overcome is that we currently rely on control engineers to
be very sophisticated users of robust control and system ID tools and combine them
appropriately in specific applications. While the individual steps may be systematic,
the combination currently requires too much user expertise, and thus is not automated
and only scalable in the hands of experts. Overcoming this is a major goal of our
research, but progress will require iteration on biologically motivated problems.

It is often the case that biological/chemical/physical understanding can be used to
identify those dynamical variables or other outputs whose measurement will be most
useful in model refinement, model invalidation, and parameter estimation. One ad-
vantage of our methods is that they allow direct inclusion of modeling information
from very heterogeneous sources through the use of a rich class of constraints on state
variables and parameters. The major obstacle to using these methods axe twofold.
One is the computational complexity of the resulting analysis, and addressing this is



the centerpiece of our proposed research. The other is that even with sophisticated
tools, biologists must be able to describe both their data and their other sources of
understanding, which can come from very diverse sources, in mathematical terms on
which automated inference can be performed.

An issue that can be a source of confusion is that even in the linear case and even when
data is generated from a toy linear model, the parameters of that model cannot be
recovered exactly in the presence of noise, except asymptotically. This is well-known,
as are various results on the effect of the noise forcing on the convergence, the effects
of unmodeled dynamics, etc. In the case where system ID is done with real data, the
notion of "true parameters" really makes no sense. For both of these reasons, in our
PrIMe system ID and model (in)validation framework we focus not on finding "true"
parameter values but describing sets of unfalsified models. The framework inherits
from robust control the ability to naturally handle unmodeled dynamics and varied
noise models, and SOSTOOLS enables the systematic use of nonlinear models. These
are all the most advanced state-of-the-art capabilities available. As importantly, this
includes the specific sense that SOS/SDP methods recover as special cases many of the
"gold-standard" algorithms that were previously available. PrIMe and SOSTOOLS
thus form the foundation of our methodology. Nevertheless, we expect they will need
to be extended substantially to scale to many problems of biological interest.

3.1.5 Blending Surrogate Model and Barrier Certificate Methods

The surrogate model approach is popular in chemical kinetics modeling, and has
even been used successfully in the past 6 months to invalidate textbook models of
calcium signalling using AfCS data. An important step of the method is to replace the
dynamical model with a static model mapping the effect of the uncertain parameters
to one specific feature of the dynamic model's response, under the action of one
specific input and initial condition. This drastically reduces the complexity of the
falsification step. Rather than dealing with dynamical models, the falsification step
is faced with checking the emptiness of a collection of polynomial inequalities, which
is adequately addressed using sum-of-squares optimization and the positivestellensatz
theory address such inequalities.

The barrier certificate approach described in Section 2.3 works directly with the
dynamical model, and is applicable to model validation of a rich class of dynamical
systems. Note that this problem can also be treated as a reachability analysis problem.
If a measurement indicates that the initial state of the system : = f(x) is contained
in a set X0, whereas another measurement indicates that after some time the state is
in X,, then the existence of B(x) satisfying (6)-(8) will prove inconsistency between
model and data, hence invalidate the model. Information on the measurement time
can also be included in this analysis, by augmenting the state of the system with
time. Applied to the special case in equation (14), for example, where LP is sufficient



to decide inconsistency, the barrier certificate approach will yield the same decision
(conclusion) for linear barrier certificates satisfying some appropriate conditions.

Since a polynomial of a given order is determinable from a collection of its sample
values, it is possible to interpret the barrier function method (and even do the compu-
tations, likely more numerically well-conditioned) as operating only with simulated
data. Viewed in this vein, the surrogate model approach and the barrier function
approach have similar starting points-families of simulations of the parametrized
model over its parameter space. They differ in the use of this simulated data. One
goal of this research for which we have had some limited initial success is to create a
family of falsification methods, based on model simulations, that includes as a special
case both the surrogate model and barrier function approaches.

3.2 Extending Methods for Reachability Analysis of Hybrid
Systems

There have been in the past several independent approaches to the algorithmic anal-
ysis of hybrid systems, a challenge in both technological and biological networks. The
combination of continuous and discrete dynamics presents a challenge for which very
few good tools exists. Even in the case of purely continuous behavior, arguably much
simpler, the computational perspectives seemed grim outside the linear case. Fortu-
nately, in the specific case of the highly nonlinear hybrid systems arising in biological
models, the introduction of the sum of squares based methodology has given renewed
hope and many concrete examples, impossible to analyzed by other methods.

Clearly, what will be needed in order to extend the reach of the methods from our
initial examples to medium and large-scale biologically and technologically relevant
applications, is an intensive blend of the best elements of all successful approaches.
In particular, as lessons from the computer science perspective, we extract the fun-
damental need of the use of hierarchies of abstractions to decouple the successive
theorem-proving stages, as a way to deal with complexity. Such a strategy appears
every time difficult problems are tackled, in domains ranging from pure mathematics
to VLSI design. The first steps will be the simpler case where the hierarchies are
designed in an ad-hoc fashion, and the algorithmic tools are used at each successive
level of inference and theorem proving. Further down the road, we imagine to be
able to use feedback from the dual solutions, to produce likely counterexamples and
suggestions on possibly optimal decompositions. Furthermore, we expect the efficient
exploration of proof space performed by the convex optimization algorithms in the
SOS case is a novel concept for the theorem proving community, and one that we
expect to be of benefit in some of the central tasks in other domains.



3.3 Analysis of Spatially Distributed Dynamics

The algorithmic analysis of spatially distributed systems has been in the center of
scientific research for many years now [90, 91, 92]. Most techniques that are employed
to understand their properties center on discretization of the describing Partial Differ-
ential Equation (PDE) and performing simulations on the resulting finite dimensional
description. This technique is particularly useful when the domain of definition of
the PDE is complicated. Our effort on this program will be twofold; first, we will
develop a methodology to obtain estimates on functional outputs of the PDE, that
can guide the choice of an adequate mesh size so that the simulation output will
be representative of the PDE description. Secondly, we will consider common PDE
systems on simple domains, aiming to answer analysis questions about them such as
stability, model verification etc. The basis for the algorithmic technique is the sum
of squares decomposition and SOSTOOLS.

The first issue we have tackled is related to the problem of estimating lower bounds
on functional outputs of PDEs [93]. Such a-priori information is extremely useful for
choosing the size of the discretisation required to capture the problem features in a
CFD simulation. Mesh adaptivity and modern a-posteriori methods may not perform
well in certain cases, and this is why a-priori methods are required. Using the results
of model invalidation, there are two methods that can be applied to obtain such
bounds. In the first one, model invalidation can be applied to an equivalent system
that includes the output functional as one of the states; invalidating values that this
new state can achieve provides estimates for the values of the output functional.
The other method, which is essentially the dual of the first one, can be applied in
the elliptic and parabolic case where the maximum principle applies; the solution is
approximated by a polynomial and a series of upper and lower bounds can be achieved
by solving an appropriately formulated sum of squares problem. The differences
between the two methods is that the dual method can be used for PDEs in many
dimensions but it cannot handle nonlinear functional outputs or other types of PDEs
where the maximum principle does not apply, whereas the first approach can be
applied in these cases, but is only for systems in one dimension. With an appropriate
extension of the notion of barrier certificates to the notion of barrier functionals, we
expect to be able to extend this to PDEs in many dimensions.

The second issue we have begun to address is related to analysis questions such as
stability, model invalidation, etc. The standard analysis tools center on the con-
struction of appropriate Lyapunov-type certificates. Several issues arise, such as the
choice of the norm in which the analysis should be performed, but now the analy-
sis can be done entirely algorithmically. Crucial steps in any analysis procedure for
PDEs involve integration by parts of the candidate Lyapunov functional, establishing
functional positivity, etc., for which we have well developed techniques. The difficul-
ties involve choosing candidate structures and infinite-dimensionality of the spaces.
We have most progress on infinite dimensional systems of a particular type: time-



delay systems. In this case, the so-called Lyapunov-Krasovskii functionals can been
constructed algorithmically to prove stability of the equilibria [94]. Also, analysis of
network congestion control schemes for the Internet, for arbitrary topologies, delays
and link capacities has been successfully tackled [95, 96]. Moreover, results in this
area have also been applied to nonlinear stability analysis of systems ranging from
population dynamics to economics.
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